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Genetic Toolkit for Assessment and Prediction of 
Population-Level Impacts of Bridge Construction on Birds 

EXECUTIVE SUMMARY 

Recent studies have highlighted alarming rates of declines in bird populations across the 
country. The State of California is home to over 650 resident and migrant avian species. 
Legislation for protecting these species has existed for over a century now, yet tools for 
identifying populations and understanding seasonal movement remain limited. Recently, 
genetic and genomic tools have provided a method for understanding population structure, 
allowing for more informed delineation of management units. The goal of this project was to 
create a genetic toolkit for identifying breeding populations and assigning individuals to those 
populations. Ultimately, such tools could be used to assess population-level impacts when 
there are conflicts with birds at infrastructure construction sites. As a test case, we sequenced 
entire genomes for 40 individual Anna’s hummingbirds (Calypte anna) from across the state. 
Based on this initial data, we found low levels of differentiation between sampled locations, 
suggesting that C. anna in California are not subdivided into different population units. 
However, there was a weak signal of geography suggesting there may be localized genetic 
differences in a small proportion of the genome. Follow-up work will focus on a broader 
sampling across the state of California to clarify any possible population subdivision or 
geographical patterns of differentiation. 
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Introduction 

California is home to nearly 650 species of birds, and its coastline and interior serve as vital 
breeding habitats and migration corridors for avian populations across the United States and 
Canada (DeSante 1983). Over the last century local, national, and international efforts to limit 
declines in bird populations have resulted in a number of legal protections, including the 
Migratory Bird Treaty Act and the California Fish and Game Code, which now protect most bird 
species in the state of California (“Laws Protecting Birds”; Golden Gate Audubon Society). 
Efforts to minimize impacts on birds during infrastructure projects such as bridge construction 
can cost millions of dollars and result in long-term delays (Cabanatun 2017; Associated Press 
2017). In order to optimize planning of infrastructure we must understand the potential 
population-specific effects on wildlife populations. 

A central challenge in the effort to achieve these goals is the lack of precise knowledge of 
population structure, including when and where particular populations are likely to be 
occupying a given area. More specifically, when a bird is found at a project site, knowledge of 
whether the individual is from a stable or declining population could have very different 
implications for resulting mitigation strategies. High-resolution maps of population structure 
are therefore the first step for understanding potential population-level impacts of construction 
projects on bird populations.  

The effort to understand population-specific bird nesting and migration patterns has been met 
with numerous limitations and technological hurdles over the last century. Past efforts have 
focused on the recovery of individually banded birds, but recapture rates are extremely low 
(Bridge et al., 2013; Arlt et al., 2013; Kelly et al., 2005). More recently, geo-locators have been 
used to track songbird movement, but remain impractical for large-scale (1000s of individuals) 
applications due to cost, weight restrictions, and the need to recover individuals to collect data 
from the devices (Bridge et al., 2013; Kelly et al., 2005). Alternatively, genetic and isotopic 
markers that use information contained within a single feather to pinpoint an individual’s 
population of origin have broad appeal because they are cost-effective, noninvasive, and do not 
require recapture (Kelly et al., 2005; Rubenstein et al., 2002). However, until recently these 
methods yielded poor resolution data and were plagued by technical issues related to working 
with feather material (Segelbacher 2002).  

We avoid many issues that plagued previous methods using a recently-developed high-
resolution genetic tagging method (Ruegg et al., 2014). We first use information across the 
entire genome of a bird to map genetic variation within a species across geographic space at 
finer spatial scales than previously possible. Once this map is established, we can then use 
genomic information contained within a single feather of a living bird or carcass to identify the 
breeding population of origin. Because of the low per-individual cost of screening, the high-
resolution molecular tags that we have developed can be used to screen thousands of samples. 
This general framework can be used to delineate different populations across the breeding 
range as well as connect breeding, migratory, and wintering regions. For example, this method 
was recently used to define previously unresolved populations of the neotropical migratory 
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songbird Wilson’s warbler and to define the Central and South American wintering range for 
each population (Ruegg et al., 2014). 

The goal of our project was to develop a genetic toolkit that can be used to identify breeding 
populations for Anna’s hummingbird. California comprises much of the native range of Anna’s 
and it is abundant across much of the state. Although the species overall does not appear to be 
in decline, demographics vary across the range (Battey 2019). In recent decades, Anna’s have 
shown a drastic range expansion from their previous range edge in northern California and 
birds can now be found wintering in British Columbia, likely assisted by resources provided by 
ornamental plants and birdfeeders. Currently, we know little about population structure, 
including the number, spatial extent, and status (stable or declining) of each population. Anna’s 
Hummingbirds found nesting at bridge construction sites have led to multi-month delays 
(Associated Press 2017) despite the fact that we lack information about the potential impacts of 
such conflicts on population viability. In this report, we: 1) analyze population structure in 
Anna’s hummingbirds across their California range and 2) Identify genetic variation most closely 
associated with geography. 

Methods 

Sample Collection 

Hummingbirds were trapped using previously published methods (Russell and Russell, 2001) by 

permitted hummingbird banders (#23947). Blood was collected (20-30 l, less than 1 % body 
weight), and placed in Queen’s lysis buffer (Seutin et. al., 1991). All collection methods were 
approved by the University of California, Davis IACUC (F#20355) and California Department of 
Fish and Wildlife (permit SC-13066). For population structure analysis it is vital that birds are 
caught in their breeding location, therefore females were checked for visual signs of breeding 
including distension of cloaca with/without wrinkled skin, visualization of enlarged oviduct or 
egg in the coelomic cavity, and/or nesting behavior like presence of spider webbing on the beak 
of the female, sheared tail feather tips etc. In total, we collected 177 birds for this study. We 
added to this collection an additional 91 birds from museum collections and wildlife centers 
(Figure 1). 
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Figure 1. Anna’s hummingbird samples collected for genomic analysis. Left panel (A) shows all 
samples including newly collected and retrieved from museums and wildlife centers. Right 
panel (B) shows locations of individuals used for whole genome sequencing. 

DNA Extraction 

Whole genomic DNA was extracted from 100-150l of blood and lysis buffer mixture using the 
DNeasy Blood & Tissue Kit (Qiagen). The following modifications to the extraction protocol 

were used: samples were incubated overnight at 56C, the sample was passed over the spin 
column twice prior to washing, an extra column drying step was taken (14000rpm for 3min), 

and DNA was eluted in 200l AE buffer heated to 56C. Whole genomic DNA was quantified 
using a Qubit Fluorometer (Thermo Fisher Scientific) and the quality of DNA was assessed using 
a 2% agarose gel. 

Library Preparation and Sequencing 

We used a modified library preparation based on Illumina’s Nextera protocol (Baym et al., 
2015; Overgaard Therkildsen and Palumbi, 2017) to sequence entire genomes of 40 birds 

(Figure 1B; Appendix A). To start, genomic DNA was standardized to 3ng/l then underwent a 
tagmentation step using TDE1 enzyme and buffer (Illumina). Dual combination Nextera indexes 
(Illumina) were then added to tagged DNA fragments followed by a reconditioning step using 
the Kapa HiFi Kit (Kapa Biosystems). Libraries were then double size selected using AMPure XP 
Beads (Beckman Coulter) and quantified using a Qubit Fluorometer (Thermo Fisher Scientific). 
Sixteen libraries only went through a left side selection. 
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All libraries were pooled equimolarly then visualized with a Bioanalyzer (Agilent). The pooled 
libraries were further size selected to 320-600bp fragments using a Blue Pippin (Sage Science) 
at the DNA Technologies and Expression Analysis Core at the UC Davis Genome Center. The 
final library was sequenced on an Illumina HiSeq4000 with PE150 and the resulting sequences 
were demultiplexed by Novogene (Sacramento, CA, USA). All raw data can be accessed on 
DRYAD. 

Sequence Processing and Analyses 

Duplicate reads were removed using FastUnique (Xu et al., 2012), adapters and low-quality 
reads were trimmed using Trimmomatic (Bolger et al., 2014), and overlapping read pairs were 
collapsed into single reads using Flash (Magoc and Salzberg, 2011). Each sample was aligned to 
the Calypte anna reference genome (GCA_003957555.2, Korlach et al., 2017) using bwa (Li and 
Durbin, 2009) then sorted and indexed using Samtools (Li et al., 2009). Genetic variants or 
single nucleotide polymorphisms (hereafter called SNPs) were identified and genotype 
likelihoods were estimated using the ANGSD tool (Korneliussen et al., 2014) accessed through 
NGStools (Fumagalli et al., 2014) using the following parameters: -trim 0 -maxDepth 500, -
minMapQ 20 -minQ 30 -minInd 20 -doCounts 1, -GL 1 -doMajorMinor 1 -doMaf 1 -skipTriallelic 
1, -SNP_pval 1e-6, -minMaf 0.03. And whole genome coverage was calculated using Samtools.  

Population structure was analyzed using principle components as well as hierarchical clustering 
analysis. A covariance matrix was calculated using PCAngsd (Meisner and Albrechtsen, 2018) 
and used in RStudio (RStudio Team, 2018) with R (R Core Team, 2019) to conduct eigenvector 
decomposition and create biplot comparing the first two principal components axes (PCs). A 
standard linear model was run to determine which factors contributed to PC axes. We ran 
separate linear models for each PC axis (as the response variable) and included sampling 
location, sex, and library prep date as explanatory variables. We used clustering in NGSadmix to 
infer the “best” number of populations and estimate ancestry proportions. We ran NGSadmix 
10 times each with population numbers (K values) ranging from 1 to 5. We used the Evanno 
method implemented in CLUMPAK (Kopelman et al., 2015) to determine the best fit K value. 

Design and Testing of Population Assignment Essay 

To test the ability of a targeted SNP assay to assign a bird to its breeding location, we identified 
variants that showed greatest differentiation between the 5 northern and 4 southern sites. We 
used realSFS, part of NGSTools (Fumagalli et al., 2004) to estimate FST (population 
differentiation) for each site with minor allele frequency >0.1. We then ranked the sites by FST 
and thinned that list, removing sites within 1000 bp of one another to minimize redundancy 
due to linkage disequilibrium. We then took the top 100, 200, and 500 SNPs to create in silico 
assays. We use 100 SNPs as a minimum because this is the size that would easily be genotyped 
using as Fluidigm SNPtype assay, as in Ruegg et al. (2014). We recalculated PCAs using these 
SNP subsets to determine whether these assays would have the power to differentiate 
populations in different regions of California. 
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Results 

Sequencing Output and SNP Identification 

Across 40 individuals, our sequencing run produced 480 million short reads. Reads were high 
quality, with >95% of reads having quality scores Q>30 (99.9% base call accuracy) for all 
individuals. We obtained high variance in coverage among samples, with individual coverage 
ranging from 0.33X to 5.68X. Based on alignment to the Calypte anna reference genome, we 
were able to identify 11,333,093 SNPs. 

Population Structure 

Based on a preliminary PCA plot, we removed four obvious outliers from downstream analysis 
(Appendix B). When the PCA was recalculated for the remaining individuals, we observed weak 
separation between the 4 southern and 5 northern (see Figure 1B) locations (Figure 2) along 
the first principle component (3.12% of variance). Some of this signal may be confounded by a 
signal for library preparation; a standard linear model shows significant effects of library 
preparation date (p=0.0002) as well as sampling location (p<0.0001). PC2 (not shown) 
separated three individuals sampled in San Diego from all other samples. PC3 separated males 
from females, though this axis explained a lower fraction of the variance (2.90%). PC3 also had 
significant effects of both sampling location (p<0.0001) and sex (p<0.0001), but not of library 
preparation date (p=0.71). 

 
Figure 2. Principle components analysis (PCA) of genetic variation across the Anna’s 
hummingbird genome. (A) Colored by location; colors match those from Figure 1 and (B) 
Colored based on north/south groupings, with the northern 5 locations in pink and the 
southern 4 locations coded in blue. 

Hierarchical clustering analysis using NGSadmix shows similarly weak population structure 
across the California range of C. anna. Based on the Evanno method, the “optimal” number of 
clusters is K=3, suggesting there could be three separate population clusters within California. 
However, a look at the ancestry proportions of these three clusters does not produce any 
obvious geographic signal (Figure 3). Methods for choosing the based K are known to be biased, 
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and caution should be used when interpreting these values (Janes et al. 2017). Based on this 
data, we therefore conclude that there are no obvious barriers to gene flow between these 
locations for C. anna. 

 
Figure 3. Ancestry proportions from hierarchical clustering analysis of 36 C. anna individuals. 
Here we visualize the mean ancestry proportions across 10 separate runs of NGSAdmix with 
K=3. 

Testing of SNPs for Population Assignment 

Overall, FST estimates between northern and southern locations were very low (global 
FST=0.003), supporting findings of little differentiation based on the population structure 
analysis. There were, however, a number of SNPs with higher levels of differentiation. We 
tested assays of three separate sizes: 100 SNPs (mean FST=0.32), 200 SNPs (mean FST=0.29), and 
500 SNPs (mean FST=0.24). Principal component biplots for these three assays are shown in 
Figure 4. All assays fully differentiated northern from southern populations, suggesting few 
SNPs are necessary to assign birds of unknown origin to a breeding region. We did not gain any 
resolution by using 500 SNPs (Figure 4C) compared to 100 SNPs (Figure 4A). The 100 SNP assay 
is listed in Appendix C. 

We discovered one region of the genome with an “FST peak”, or region with many differentiated 
SNPs adjacent to one another (Appendix D). Although further testing is needed for validation, 
this region could be explored as an even more simple diagnostic tool to assign birds to 
geographical locations. 
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Figure 4. Principal components biplot of SNPs that differentiate northern from southern C. 
anna. Here we show assays of three different sizes: A) 100 SNPs, B) 200 SNPs, and C) 500 
SNPs 

Discussion 

Understanding population structure is an important first step for managing wildlife populations 
(Funk et al., 2012; Palsbøll et al., 2007). Knowledge of population boundaries is vital to a wide 
array of conservation goals including estimating population declines (Segelbacher & Storch 
2002; Moritz et al., 1997), identifying sources of adaptive variation (Funk et al., 2019), 
measuring gene flow and connectivity (Segelbacher et al., 2010), and estimating inbreeding 
(Darvill et al., 2006). Because infrastructure projects can directly impact genetic diversity and 
gene flow, development of a toolkit with which to assess population structure and the 
distribution of genetic variation could aid in predicting the impacts of such projects and wildlife. 
Here, we focus on the development of such a toolkit in the species C. anna, which has most of 
its range in California and has been the focus of previous conflicts with infrastructure projects. 

Prior to this, little was known about genetic variation, population structure, and movement in 
C. anna. Prior to the early 1900s, the northern range limit was around the Sacramento Valley 
(Grinnell 1915), but over the last century that range has expanded and individuals can be found 
breeding as far north as British Columbia (Scarfe & Finlay 2001; Battey 2019). Population 
dynamics vary across this range, with winter population sizes in central California maintaining 
constant sizes over the last half century and populations in northern California increasing 
(Battey 2019). This difference in demography led us to wonder whether there were barriers to 
gene flow that were separating populations with different demographic trajectories or whether 
these differences were simply a product of a constantly expanding range. 

Based on our analysis of 40 whole genomes gathered from across the state of California, we 
find little evidence of barriers to gene flow. We do find weak geographic differences among 
sampling locations; principle components analysis showed significant differences between birds 
sampled from different regions. However, our clustering analysis did not reveal any obvious 
geographical patterns, so any differentiation between sampled populations is likely weak. One 
issue with our data is that we see a potential artifact of library preparation. Such batch effects 
are common in next generation sequencing data and can obscure true biological signals (Taub 
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et al., 2010). More extensive sequencing across the range in addition to validation through 
alternative sequencing methods will be needed to eliminate the potential batch effects on 
inference of population structure. 

Although population structure analysis revealed few barriers to gene flow, we were able to 
identify some genetic variants that distinguished between geographical locations. We tested 
the power of 100, 200, and 500 SNP assays to distinguish between northern and southern 
populations. All assays showed complete differentiation between these groups suggesting the 
ability to design assays to assign geographical origin despite apparent weak population 
structure. We did observe one region of the genome with a peak in differentiation. Regions like 
this can be the result of natural selection acting to differentiate populations that live in 
different environments or as the result of reproductive isolating forces. Further validation 
across more populations should be done to determine whether this region alone could serve as 
a simple assay to distinguish northern from southern birds. 

With the exception of invasive species, birds in California are protected by a number of legal 
frameworks, including the federal Migratory Bird Treaty Act as well as the state California Fish 
and Game Code. In the past, mitigations efforts costing millions of dollars have been 
undertaken and projects have been delayed for months, sometimes due to even a single bird 
nesting at a bridge construction site. Estimations of population structure can help identify the 
population of origin of such birds and estimate the potential negative effects of such conflict 
with infrastructure projects. 

Follow Up 

We find little population structure among the sequenced populations. However, a more 
complete view of whether multiple populations of C. anna exist in California would be 
facilitated by more extensive geographic sampling as well as resequencing of low coverage 
samples from this initial project. We are currently working to obtain data from more locations 
(see samples in Figure 1A) in order increase the resolution of population structure analysis. 
Results should lead to a more high-resolution definition of populations across the California 
range of C. anna. 
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Data Management 

Products of Research  

We conducted whole genome sequencing for 40 birds sampled from across the state. Blood or 
tissue samples as well as DNA extracts are archived in the Tell Lab at UC Davis. Sequencing was 
performed on an Illumina HiSeq 4000 at Novogene (Sacramento, CA). We generated between 
1.4 million and 25 million short reads per individual bird. 

Data Format and Content  

The raw data is archived in .fastq format, which provides base pair reads as well as sequencing 
quality scores. Metadata, including information on capture location and date is stored as a 
spreadsheet. 

Data Access and Sharing  

The data is publicly available on the Dryad data repository at 
https://doi.org/10.25338/B8W03P. 

Reuse and Redistribution  

Data is available for public use, providing it is properly referenced. Suggested reference: 

Adams, Nicole et al. (2019), Low coverage whole genomes of Calypte anna across California, 
USA, v5, UC Davis, Dataset, https://doi.org/10.25338/B8W03P 

  

https://doi.org/10.25338/B8W03P
https://doi.org/10.25338/B8W03P
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Appendix A 

Table A1. Metadata for individual C. anna used for whole genome sequencing. “Raw reads” 
refers to the total number of short reads from the sequencing run assigned to that sample. 
“Coverage” was calculated using samtools. 

ID Town County Sex Raw reads Coverage 

ANHU_16592 Placerville El Dorado F 1850204 0.43 

ANHU_16694 Arroyo Grande San Luis Obispo M 3124570 0.71 

ANHU_16698 Arroyo Grande San Luis Obispo F 2685978 0.62 

ANHU_16699 Arroyo Grande San Luis Obispo M 2316801 0.53 

ANHU_16700 Arroyo Grande San Luis Obispo M 2350087 0.54 

ANHU_16701 Arroyo Grande San Luis Obispo F 2793232 0.65 

ANHU_16703 Arroyo Grande San Luis Obispo F 2125440 0.49 

ANHU_16909 Goleta Santa Barbara F 2682251 0.62 

ANHU_16910 Goleta Santa Barbara M 2165579 0.5 

ANHU_16911 Goleta Santa Barbara F 2829951 0.65 

ANHU_16912 Goleta Santa Barbara M 1976385 0.45 

ANHU_16913 Goleta Santa Barbara M 1432311 0.33 

ANHU_16914 Goleta Santa Barbara M 2551505 0.57 

ANHU_16915 Goleta Santa Barbara M 1709372 0.39 

ANHU_123 Winters Yolo M 11550861 2.66 

ANHU_126 Winters Yolo F 20452527 4.63 

ANHU_128 Winters Yolo M 11331387 2.52 

ANHU_140 San Diego San Diego M 17170392 3.91 

ANHU_160 San Diego San Diego F 22305221 5.07 

ANHU_162 San Diego San Diego F 2746784 0.63 

ANHU_168 San Diego San Diego F 1598805 0.37 

ANHU_203 Beverly Hills Los Angeles F 16043405 3.69 

ANHU_250 Beverly Hills Los Angeles M 17476632 3.94 

ANHU_264 Beverly Hills Los Angeles F 18733004 4.29 

ANHU_267 Beverly Hills Los Angeles F 12993554 3.02 
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ID Town County Sex Raw reads Coverage 

ANHU_323 Chico Butte F 16214478 3.7 

ANHU_325 Chico Butte F 19315477 4.41 

ANHU_334 Chico Butte M 21908223 4.99 

ANHU_336 Chico Butte M 20660792 4.64 

ANHU_338 Chico Butte F 19912775 4.47 

ANHU_348 North Fork Madera M 22351753 5.1 

ANHU_356 North Fork Madera F 23095567 5.31 

ANHU_358 North Fork Madera F 25862170 5.68 

ANHU_363 North Fork Madera M 19188387 4.4 

ANHU_368 North Fork Madera F 16922702 3.93 

ANHU_401 Winters Yolo F 8634737 1.98 

ANHU_447 Grass Valley Nevada M 16563612 3.83 

ANHU_450 Grass Valley Nevada M 22371483 5.11 

ANHU_453 Grass Valley Nevada M 20993610 4.71 

ANHU_467 Grass Valley Nevada F 21053303 4.77 
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Appendix B 

 
Figure A1. Principal components plot with all 40 individuals. Outlier individuals were removed 
to create plots within the main text.  
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Appendix C 

Table A2. Position of SNPs used for testing of 100 SNP geographical assignment assay. 

Chromosome Position FST 

NW_022045445.1 27057 0.75505679 

NC_044248.1 6446580 0.669777 

NC_044264.1 10955874 0.42609921 

NC_044264.1 10404878 0.42520199 

NC_044264.1 10967229 0.41653195 

NC_044264.1 10961031 0.41022547 

NC_044264.1 10990660 0.40659707 

NC_044264.1 10953697 0.40643103 

NC_044244.1 139629753 0.3991544 

NC_044248.1 8639379 0.3936843 

NC_044264.1 10965117 0.38005465 

NC_044246.1 5223334 0.37173349 

NC_044254.1 29885599 0.36547495 

NC_044245.1 108190239 0.36416597 

NC_044253.1 24994040 0.36166471 

NC_044245.1 100757564 0.3604218 

NC_044260.1 12742533 0.36016052 

NC_044246.1 7891338 0.35747038 

NC_044255.1 1586942 0.3574533 

NC_044244.1 195993881 0.3569053 

NC_044247.1 5436972 0.35523923 

NC_044244.1 149006997 0.3543643 

NC_044254.1 28590866 0.34693881 

NC_044253.1 30415806 0.34664271 

NC_044244.1 157122285 0.34643659 

NC_044264.1 10962538 0.34640778 
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Chromosome Position FST 

NC_044264.1 10971850 0.34484038 

NC_044254.1 25847386 0.34418975 

NC_044245.1 22069694 0.34280446 

NC_044244.1 141331468 0.34273198 

NC_044253.1 20871530 0.33765315 

NC_044244.1 2348359 0.33671448 

NC_044244.1 85897371 0.33412635 

NC_044257.1 18085719 0.33111532 

NC_044271.1 5182369 0.3305189 

NC_044248.1 19140767 0.33030803 

NC_044244.1 40784302 0.31839274 

NC_044248.1 28858451 0.31780281 

NC_044245.1 37533099 0.31695383 

NC_044246.1 108244182 0.31500895 

NC_044244.1 115315128 0.31346223 

NC_044273.1 3762188 0.31174187 

NC_044264.1 10958303 0.31120164 

NC_044248.1 35382670 0.3108084 

NC_044245.1 105090385 0.30921795 

NC_044244.1 56237646 0.30897768 

NC_044276.1 24816831 0.30813632 

NC_044253.1 7962289 0.30676025 

NC_044253.1 27010223 0.30630275 

NC_044248.1 39587224 0.30563319 

NC_044248.1 14209549 0.30373946 

NC_044244.1 55806595 0.30160756 

NC_044274.1 12301018 0.30038308 

NC_044244.1 163395873 0.30034364 
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Chromosome Position FST 

NC_044265.1 751548 0.2973533 

NC_044244.1 117931760 0.29589449 

NC_044274.1 9590928 0.2954329 

NC_044245.1 102440992 0.29383997 

NC_044253.1 25444300 0.29321312 

NC_044246.1 113921050 0.29312567 

NW_022045449.1 89626 0.29075604 

NC_044257.1 12935624 0.29068416 

NC_044264.1 10984166 0.29004211 

NC_044260.1 5720271 0.2895399 

NC_044244.1 30674358 0.28932172 

NC_044264.1 10951972 0.28847438 

NC_044261.1 7848262 0.28763436 

NC_044249.1 4022519 0.28749622 

NC_044244.1 127540382 0.28590293 

NC_044252.1 19970592 0.2857781 

NC_044244.1 124954298 0.28512561 

NC_044272.1 3584192 0.28262427 

NC_044246.1 2215258 0.28220647 

NC_044244.1 35162171 0.28192972 

NC_044265.1 11326399 0.28173061 

NC_044264.1 10994357 0.28166644 

NC_044248.1 23119951 0.28137709 

NC_044244.1 49423923 0.27788977 

NC_044246.1 110436470 0.2777589 

NC_044264.1 10985658 0.27731534 

NC_044267.1 1503680 0.27670217 

NC_044268.1 5249994 0.27666871 
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Chromosome Position FST 

NC_044250.1 2196784 0.27604607 

NC_044256.1 2620109 0.27490767 

NC_044248.1 24027802 0.2732877 

NC_044245.1 71569406 0.27316804 

NC_044244.1 10910640 0.27284296 

NC_044260.1 11266638 0.27263488 

NC_044248.1 6777680 0.27250037 

NW_022045535.1 36605 0.27234822 

NC_044250.1 10664308 0.27156794 

NC_044266.1 6048952 0.27107741 

NC_044248.1 37584491 0.27106024 

NC_044245.1 129266888 0.27049744 

NC_044244.1 102998963 0.27043122 

NC_044260.1 13694039 0.27041129 

NC_044261.1 10887751 0.26965335 

NC_044246.1 106801780 0.26937255 

NC_044256.1 1485108 0.2675217 

NC_044245.1 71450600 0.26729618 
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Appendix D 

 
Figure A2. Manhattan plot showing FST peak between northern and southern populations. 
Such a region could be used as diagnostic locus predictive of breeding region. 
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